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A variational principle is derived for the stream function-vorticity formulation of the 
Navier-Stokes equations which has the no-slip boundary conditions as natural boundary 
conditions. The usual difficulty of determining a finite difference approximation for the 
boundary vorticity at a rigid wall tin be avoided by a finite element approach. Piecewise 
bilinear trial functions on rectangles are shown to give a generalization of a formula due to 
Woods. The same choice also gives a second order accurate Arakawa scheme for the Jacobian 
of the stream function and vorticity. 

1. INTRODUCTION 

There is an extensive and rapidly growing literature on the application of finite 
element methods to the numerical solution of fluid flow problems. In many cases, 
such as potential flow, compressible inviscid flow, and slow viscous flow there are 
well-established minimum principles or complementary variational principles which 
serve as a sound starting point for the analysis. In most problems there is no known 
minimum principle so it is usual to employ the Galerkin method with the expansion 
functions as piecewise low order polynomials with compact support on small regions. 
Recently Usher and Craik [l] have renewed interest in a variational principle for the 
full Navier-Stokes equations due to Bateman [2], which uses the original velocity 
and pressure fields plus pseudovelocity and pseudopressure fields. The complete set 
of Euler-Lagrange equations consists of the Navier-Stokes equations and their 
adjoints. Finlayson [3] had earlier severely criticized the use of such variational 
principles on the grounds of their having no physical interpretation and producing 
no new numerical solution procedures. Usher and Craik, in spite of this comment, 
have used the Bateman principle usefully in discussing nonlinear wave interactions. 

In this paper a variational principle in the spirit of Bateman is given for the stream 
function-vorticity formulation of the Navier-Stokes equations which has only the 
values of the stream function at a solid boundary and the vorticity at a free boundary 
as essential boundary conditions; the no-slip conditions on the normal derivative 
of the stream function at a solid boundary are natural boundary conditions. The full 
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power of the finite element method is then used to rederive the Arakawa second order 
scheme for the convective terms in the vorticity equation. This scheme emerges 
by simply assuming that the stream function and vorticity are piecewise bilinear 
on rectangles as has been shown recently by Jespersen [4]. From this same assumption 
some interesting new approximations for the boundary vorticity are obtained. 
Previous authors have approximated boundary vorticities solely in terms of quantities 
along the normal to the boundary. Here it is shown that it is more natural to include 
tangential contributions as well. 

2. THE VARIATIONAL PRINCIPLE 

It is supposed that incompressible viscous fluid of constant density is flowing 
steadily in a region D of the (x, v) plane with boundary aD. If the governing equations 
are made nondimensional with respect to characteristic length and velocity scales 
the equations for the dimensionless stream function Y* and vorticity Q* which apply 
within D are 

aY* aL?* aY* aS2* 
V2Q*-R,(7X--7)=0, 

v-Y* + f2” = 0, (2.2) 

where R, is the Reynolds number. In a typical problem the boundary aD may be 
supposed to consist of sections aD, which are stationary and solid, sections aD, 
which are free, and sections aD, which are moving and solid. Boundary conditions 
are 

YJ* = lu,) aY*lan = 0 on aD, ; (2.3) 

Y* = Y,) I2 = Qn, on %Df : (2.4) 

Y* = ‘y,, aYf/*lan = u on iiD,, , (2.5) 

FIG. 1. Sample problems. (a) Driven cavity flow; three sides form a& , top forms a&, . (b) 
Entrance flow; top and bottom form aDO, sides form a&. 
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where ajan denotes differentiation along the outward normal. Y,, may be assumed to be 
constant on aD,, ?P,,, and U assumed to be constant on aD, , and ?P, and Q, assumed 
to be prescribed functions of x and y. As examples, the boundary conditions for a 
driven cavity flow and an entrance length flow in a duct are shown in Figs. la and lb. 
For simplicity of presentation, attention will be restricted initially to problems where 
there are no moving boundaries. 

It will now be established that there is a functional which has a stationary point 
at the solution of the problem given by Eqs. (2.1)-(2.4). Consider the functional 

of the two pseudostream functions I,!J~ and & and the pseudovorticities o1 and wz , 
over the region D with area element da, where 

L(dJl? $2 I Wl, 4 

ah am, -___ 
ax ax 

If#5>,2>W19 ‘and w2 , belonging to the class of functions having piecewise continuous 
second derivatives and bounded Sobolev norms such that 

s (grad #J2 da < M?, i= 1,2 
D 

are subjected to independent variations, then the first variation in J, 

- corresponding terms in S& , SW, , and derivatives, 

can be written 

+ 
a+ a*, aa2 w2 _i------- 
ax ay ay ax >I 

- corresponding terms in S#, , So, . 
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The Euler-Lagrange equations are 

and the natural boundary conditions on aD are 

% * .gL+GJ 
#2 = 0, 

a*1 R WI sw,:---- 
an 2 as *2 = ‘7 (2.11) 

with two further equations and two sets of natural boundary conditions with the 
roles of (& , or) and (#2 , w2) interchanged. 

The next stage of the argument is to show that if the corresponding pseudovariables 
satisfy the same Dirichlet conditions on the appropriate parts of the boundary aD 
then they are equal throughout D and satisfy certain natural boundary conditions, 
in which case, Eqs. (2.8) and (2.9) reduce to Eqs. (2.1) and (2.2), and a variational 
principle is established for a problem which has the same solution as that posed by 
Eqs. (2.1)-(2.4), provided the correct natural boundary conditions arise. 

Suppose then that the pseudovariable trial functions satisfy the essential conditions 

*I = #2 = Y,on aD, and *I = #2 = Yfon aD,, (2.10a) 

WI = c.02 = Q,on aD,. (2.11a) 

In standard variational principles Dirichlet boundary conditions are almost invariably 
regarded as essential conditions to be satisfied by the trial functions, so there is no 
real loss of generality. Dirichlet conditions are also very easy to impose in a numerical 
scheme. When the pseudovariables satisfy (2.10a) and (2.1 la), (2.10) does not apply 
anywhere on aD and Eq. (2.11) applies on aD, . As & is piecewise constant along aDo 
Eq. (2.11) simplifies to 

a#,/an = 0, 

the analog to the no-slip condition. Similarly it may be shown that 

a+,lan = 0 on ao,. 

The semidifference functions 
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satisfy the homogeneous boundary value problem 

V=fi - R ( ' 
F=z=oonaD an 03 t?=a=OonaD,, 

(2.12) 

(2.13) 

where Y = i(& + &), Q = i(q + wz). 
The operator V2 applied to (2.12) yields 

aP aY 
v4F= -V20+.V2(G5-- 

ax ay 

by (2.13). Consequently 

s FVaFda= -4s $i!!&-- aQ aPda 
D D ax ay 

which by Gauss’ divergence theorem implies 

(The surface integral vanishes as p = 0 on the boundary; and the volume integral 
is clearly also zero. The repeated suffix summation is being used.) A further 
application of Gauss’ theorem gives 

fD (V2!P)2 da - R ID V2!P ($ g - $- g) da 

= 
f 

a!P 
-V2!Fds-- R~~,$($~-$~)ds 

aD an 

=- 
s 

EDds 
aD an 

(from 2.12). 

This surface integral vanishes because either aF/an or 0 is zero at each point of the 
boundary. 
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An application of Schwarz’s inequality gives 

< R (JD (V2F)2 da)“’ (ID (grad !Q2 (grad p)” &)li2, 

Now the minimum value of 

grad(W4 - ~4) = 0, $ = 0 on aD 

among the class of L, integral functions is the least eigenvalue p1 for the problem 

so that 

ID (V’b)” da/ID (grad 4)” da, 4 = 0 on aD 

jD (grad y?” (grad p>” da < M2 ID (grad F)” da < $ [D (~29 da, 

where M2 < Ml2 + M22. Thus finally 

s D 
(V2F)2 du < $ s(V2!F)2 da. (2.14) 

Equation (2.14) shows that if R is small there is a contradiction unless 

s (V2Yr)2 da = 0; 
D 

i.e., unless ‘P = 0 and by implication that D = 0. In such circumstances I,$ = $2 = Y, 
w1 = w2 = Q, and the boundary value problem given by Eqs. (2.8), (2.9), (2.10), 
(2.1 I), (2.1Oa), and (2.1 la) becomes 

V2Q - R 
9 (2.15) 

VT + Q = 0, (2.16) 

y=yo, g= 0 on aDo, (2.17) 

Y= Y,, J2 = 52, on aD, . (2.18) 

The solution of this problem is the same as that originally posed provided Eqs. (2.1)- 
(2.4) have a unique solution and R is equal to the Reynolds number R, . 
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If the solid part of the boundary has a moving section aD, , this problem can be 
treated by adding the surface integral 

- s U(wI - CIJ~) ds 
ah 

to the basic functional and insisting that the trial functions #1 = #2 = Y, on aD,, . 
The boundary conditions are then modified to include 

!P=lu,, W/an = U on i?D, . 

3. APPLICATION OF FINITE ELEMENTS 

The variational principle established in the previous section will now be used 
to derive a finite element approximation for the stream function-vorticity equations 
for two-dimensional flow. It will be supposed that the flow region D can be divided 
into small square regions and that a typical node labeled 0 is surrounded by nodes 1-8 
as shown in Fig. 2 and that local coordinates X, Y are measured from 0. On the 
element bounded by nodes O-3 it will be supposed that 

wme = F. 4d#i”(x, ~-1, m = 1,X (3.2) 

where c/I,,~ = (1 - X)(1 - Y), $re = X(1 - Y), +2e = XY, &e = (1 - X) Y, x = 
ih + AX, y = jh f hY. The contribution of this element to the total functional is 

J” = (zg&& - ~&iJ;j) Lx;j - ~(ctJ,“&L& - wz”#J&.) yyj 

- wx$G4&k - &&KJ B&i , (3.3) 

where the double suffix notation is being used (no summation over e, 1, 2) and 

4 3 2 

h 

5 

0 h I 

6 7 6 

FIG. 2. Typical square element and node notation. Element e, origin 0 (i/z, j/z), local coordinates 
defined by x = ih + 23, y  = jh + Yh. 
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and 

(3.4) 

The matrices o$j , & , and y$ are 

k=O 1 2 3 
o-2 o-2 o-2 1 1 O-l 0 1 o---1-1 2 
2 o-1-1 2 o-2 0 1 o-2 1 1 O-l 0 
0 1 O-1 -1 2 O-1 0 2 o-2 1 1 o-2 * 

-2 1 1 O-1 0 1 O-l-l 2 o-2 0 2 0 1 

The condition that J is stationary implies that 

i?J/&,& = aJ/&.o;, = 0, J = c J”. (3.5) 

As’ #r = & and w1 = w2 in the final solution these conditions can be used to simplify 
Eq. (3.5). With *pi = Yt”, etc., 

aJpjaYie = c$Q~’ - (R/2)@& - B~ij) Q~“!?‘~e, 

aJyaS2ie = a;jYje - yg2j;2j" - (~12) j3jeiliYjeYke. 

The last term in Eq. (3.7) may be rewritten as 

(3.6) 

(3.7) 

using the symmetry of the product YjeYke and the antisymmetry of jIijk with respect 
to its first two indices (the expression involving & is the same in (3.6) and (3.7)). 
At a typical node away from any boundaries and within a square mesh of size h 
these equations imply that 

- $rcu; - YlW, - Q,> + w5 - u;)(Q, - Q,) + (Y, - Y,>(QrJ - 52,) 

+ (Yl - ~7wo - J&3) + v1+ y, + y&A - w + (Y3 + Y, + Y5-) 
x VA - a> + (‘ys + Y6 + Y&J& - QJ + (Y, + y, + Yl)(sz, - Q,)}, 

(3.8) 

0 = 8yo - i Yi - ; 169, + 4 C Qi + C 
I 

52, 
I 

. (3.9) 
i=l iodcl i even 
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The nonlinear terms in (3.7) cancel when combined from all four elements surrounding 
node 0. 

In each of (3.8) and (3.9) the first set of terms is the nonstandard g-point second 
order approximation to the Laplacian. The term in brackets in (3.8) is identical to the 
second order Arakawa scheme for approximating the Jacobian of Y and !2. The 
Jacobian is approximated by the sum g(J, + J, + J3) in the notation of Crow and 
Morton [5], an expression which is antisymmetric in Y and Q and which in the 
absence of boundaries conserves the mean square vorticity and the mean square 
kinetic energy. 

Near a boundary on which Y is constant Eq. (3.7) gives an approximation to the 
no-slip condition. If the boundary is parallel to the local y-axis and passes through 
node 0 and the fluid is in the region to the right of 0 the appropriate equation is 

0 = @J’c, - 2P’, + ul, + ‘u,> - (Y, + ‘y7) 

- (h2/6){8Q, + 452, + 2(52, + Q,> + fin, + Q3>. (3.10) 

Again the nonlinear terms cancel. In the special case where both the stream function 
and vorticity do not depend on y Eq. (3.10) gives 

0 = 3(Y1 - yo> + h2(Q, + 8Q,), (3.11) 

which is Woods’ [6] method for wall vorticity, a commonly used second order accurate 
approximation. 

4. DISCUSSION 

The variational principle for the stream function vorticity formulation of the 
Navier-Stokes equation has been used to derive some second order accurate finite 
element difference approximations. Simultaneously the no-slip conditions usually 
used at solid boundaries have been generalized. The method of this paper is currently 
being applied to a pressurized bearing problem. 

The variational principles have been extended to time dependent flow problems 
and the resulting schemes are essentially identical to those recently discussed by 
Cullen [7, 81. 

REFERENCES 

1. J. R. USHER AND A. D. CRAIK, J. Fluid Mech. 66 (1974), 209. 
2. H. BATEMAN, in “Hydrodynamics,” p. 165, (Dryden, Murnaghan, and Bateman, 1932. 
3. B. A. FINLAYSON, The Method of Weighted Residuals and Variational Principles,” Academic 

Press, New York, 1972. 
4. D. JESPERSEN, J. Computational Phys. 1 (1975). 

5. J. E. CROW AND K. W. MORTON, “Computational Physics Conference UKAEA,” Paper 47, 
Abingdon, 1969. 

6. L. C. WOODS, Aero. Quart. 5 (1954), 176. 
7. M. J. P. CULLEN, J. Inst. Math. Appl. 11 (1973), 15. 
8. M. J. P. CULLEN, J. Inst. Math. Appl. 13 (1974), 233. 


